机器学习算法一锅端
最优的通用机器学习算法
在机器学习领域,一个基本的定理就是“没有免费的午餐”。换言之,就是没有算法能完美地解决所有问题,尤其是对监督学习而言(例如预测建模)。
举例来说,你不能去说神经网络任何情况下都能比决策树更有优势,反之亦然。它们要受很多因素的影响,比如你的数据集的规模或结构。
其结果是,在用给定的测试集来评估性能并挑选算法时,你应当根据具体的问题来采用不同的算法。
当然,所选的算法必须要适用于你自己的问题,这就要求选择正确的机器学习任务。作为类比,如果你需要打扫房子,你可能会用到吸尘器、扫帚或是拖把,但你绝对不该掏出铲子来挖地。
如果说最优的通用机器学习算法,那可能就是随机算法了,只要数据符合自然规律,那么随机算法的准确率在50%。
误差分析
在统计学中,一个模型好坏,是根据偏差和方差来衡量的:
-
偏差:描述的是预测值(估计值)的期望E’与真实值Y之间的差距。偏差越大,越偏离真实数据。
$$Bias[\hat{f(x)}] = E[\hat{f(x)}] - f(x) \tag{1}$$
-
方差:描述的是预测值P的变化范围,离散程度,是预测值的方差,也就是离其期望值E的距离。方差越大,数据的分布越分散。
$$Var[\hat{f(x)}] = E[(f(x) - E[\hat{f(x)}])^2] \tag{2}$$
模型的真实误差是两者之和,如公式:
$$E[(y - \hat{f(x)^2}] = Bias[\hat{f(x)}]^2+Var[\hat{f(x)}] + \sigma ^ 2\tag{3}$$
在统计学习框架下,大家刻画模型复杂度的时候,有这么个观点,认为$Error = Bias + Variance$。这里的Error大概可以理解为模型的预测错误率,是有两部分组成的,一部分是由于模型太简单而带来的估计不准确的部分(Bias),另一部分是由于模型太复杂而带来的更大的变化空间和不确定性(Variance)。
简单来讲是我们要在训练集上学习一个模型,然后拿到测试集去用,效果好不好要根据测试集的错误率来衡量。但很多时候,我们只能假设测试集和训练集的是符合同一个数据分布的,但却拿不到真正的测试数据。这时候怎么在只看到训练错误率的情况下,去衡量测试错误率呢?
由于训练样本很少(至少不足够多),所以通过训练集得到的模型,总不是真正正确的。(就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。
而且,实际中,训练样本往往还有一定的噪音误差,所以如果太追求在训练集上的完美而采用一个很复杂的模型,会使得模型把训练集里面的误差都当成了真实的数据分布特征,从而得到错误的数据分布估计。这样的话,到了真正的测试集上就错的一塌糊涂了(这种现象叫过拟合)。但是也不能用太简单的模型,否则在数据分布比较复杂的时候,模型就不足以刻画数据分布了(体现为连在训练集上的错误率都很高,这种现象较欠拟合)。过拟合表明采用的模型比真实的数据分布更复杂,而欠拟合表示采用的模型比真实的数据分布要简单。
在实际中,为了让Error尽量小,我们在选择模型的时候需要平衡Bias和Variance所占的比例,也就是平衡over-fitting和under-fitting。
当模型复杂度上升的时候,偏差会逐渐变小,而方差会逐渐变大。
机器学习算法优缺点分析
-
朴素贝叶斯
朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否需要求联合分布),比较简单,你只需做一堆计数即可。如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,比如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用。引用一个比较经典的例子,比如,虽然你喜欢Brad Pitt和Tom Cruise的电影,但是它不能学习出你不喜欢他们在一起演的电影。
优点:
- 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率;
- 对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已;
- 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练(即可以实时的对新增的样本进行训练);
- 对缺失数据不太敏感,算法也比较简单,常用于文本分类;
- 朴素贝叶斯对结果解释容易理解。
缺点:
- 需要计算先验概率;
- 分类决策存在错误率;
- 对输入数据的表达形式很敏感;
- 由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。
应用场合:
- 欺诈检测中使用较多;
- 一封电子邮件是否是垃圾邮件;
- 一篇文章应该分到科技、政治,还是体育类;
- 一段文字表达的是积极的情绪还是消极的情绪;
- 人脸识别。
-
**Logistic Regression(逻辑回归) **
**逻辑回归属于判别式模型,同时伴有很多模型正则化的方法
(L0, L1,L2,etc)
,而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。**与决策树、SVM相比,你还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法-online gradient descent)。如果你需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者你希望以后将更多的训练数据快速整合到模型中去,那么使用它吧。Sigmoid函数:$f(x )= \frac{1}{1 + e^{-x}}$
优点:
- 实现简单,广泛的应用于工业问题上;
- 分类时计算量非常小,速度很快,存储资源低;
- 便利的观测样本概率分数;
- 对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题;
- 计算代价不高,易于理解和实现。
缺点:
- 当特征空间很大时,逻辑回归的性能不是很好;
- 容易欠拟合,一般准确度不太高;
- 不能很好地处理大量多类特征或变量;
- 只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;
- 对于非线性特征,需要进行转换。
应用领域:
- 用于二分类领域,可以得出概率值,适用于根据分类概率排名的领域,如搜索排名等;
- Logistic回归的扩展softmax可以应用于多分类领域,如手写字识别等;
- 信用评估;
- 测量市场营销的成功度;
- 预测某个产品的收益;
- 特定的某天是否会发生地震。
-
**线性回归 **
线性回归是用于回归的,它不像Logistic回归那样用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为: $\hat{w} = (X^TX)^{-1}X^Ty$
而在LWLR(局部加权线性回归)中,参数的计算表达式为: $\hat{w} = (X^TWX)^{-1}X^TWy$
由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。
优点: 实现简单,计算简单。
缺点: 不能拟合非线性数据。
**优化结果:**L1正则化(Lasso),L2正则化(Ridge)
-
最近邻算法——KNN
KNN即最近邻算法,其主要过程为:
- 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);
- 对上面所有的距离值进行排序(升序);
- 选前k个最小距离的样本;
- 根据这k个样本的标签进行投票,得到最后的分类类别。
如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。近邻算法具有较强的一致性结果,随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。
优点:
- 理论成熟,思想简单,既可以用来做分类也可以用来做回归;
- 可用于非线性分类;
- 训练时间复杂度为O(n);
- 对数据没有假设,准确度高,对outlier不敏感;
- KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练;
- KNN理论简单,容易实现。
缺点:
- 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少)效果差;
- 需要大量内存;
- 对于样本容量大的数据集计算量比较大(体现在距离计算上);
- 样本不平衡时,预测偏差比较大。如:某一类的样本比较少,而其它类样本比较多;
- KNN每一次分类都会重新进行一次全局运算;
- k值大小的选择没有理论选择最优,往往是结合K-折交叉验证得到最优k值选择。
应用领域
文本分类、模式识别、聚类分析,多分类领域
-
**决策树 **
决策树的一大优势就是易于解释。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)。它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一丁点),它训练快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。
决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益(ID3,C4.5,Gini)的计算公式,并深入理解它。
熵的定义公式如下:$H=-\sum_{i=1}^np(x_i)log2p(x_i)$。
其中的n代表有n个分类类别(比如假设是二类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率:$p_1和p_2$,这样就可以计算出未选中属性分枝前的信息熵。现在选中一个属性$x_j$,用来进行分枝,此时分枝规则是:如果$x_j=v$的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵:$H1和H2$,计算出分枝后的总信息熵:$H’=p1H1+p2H2 $,则此时的信息增益:$\Delta H = H - H’$,以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。
优点:
- 决策树易于理解和解释,可以可视化分析,容易提取出规则;
- 可以同时处理标称型和数值型数据;
- 比较适合处理有缺失属性的样本;
- 能够处理不相关的特征;
- 测试数据集时,运行速度比较快;
- 在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
缺点:
- 容易发生过拟合(随机森林可以很大程度上减少过拟合);
- 容易忽略数据集中属性的相互关联;
- 对于那些各类别样本数量不一致的数据,在决策树中,进行属性划分时,不同的判定准则会带来不同的属性选择倾向;信息增益准则对可取数目较多的属性有所偏好(典型代表ID3算法),而增益率准则(CART)则对可取数目较少的属性有所偏好,但CART进行属性划分时候不再简单地直接利用增益率尽心划分,而是采用一种启发式规则)(只要是使用了信息增益,都有这个缺点,如RF)。
- ID3算法计算信息增益时结果偏向数值比较多的特征。
改进措施:
- 对决策树进行剪枝。可以采用交叉验证法和加入正则化的方法;
- 使用基于决策树的combination算法,如bagging算法,randomforest算法,可以解决过拟合的问题。
应用领域:
企业管理实践,企业投资决策,由于决策树很好的分析能力,在决策过程应用较多。
关于ID3与C4.5算法:
ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。
C4.5算法核心思想是ID3算法,是ID3算法的改进,改进方面有: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
- 在树构造过程中进行剪枝;
- 能处理非离散的数据;
- 能处理不完整的数据。
优点
产生的分类规则易于理解,准确率较高。
缺点
- 在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效;
- C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
在回归上,常使用CART树,也是后面的Boost以及Bagging算法的基础。
-
**SVM支持向量机 **
支持向量机,一个经久不衰的算法,高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。
优点:
- 可以解决高维问题,即大型特征空间;
- 解决小样本下机器学习问题;
- 能够处理非线性特征的相互作用;
- 无局部极小值问题;(相对于神经网络等算法)
- 无需依赖整个数据;
- 泛化能力比较强。
缺点:
- 当观测样本很多时,效率并不是很高;
- 对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;
- 对于核函数的高维映射解释力不强,尤其是径向基函数;
- 常规SVM只支持二分类;
- 对缺失数据敏感。
对于核的选择也是有技巧的(libsvm中自带了四种核函数:线性核、多项式核、RBF以及sigmoid核):
第一,如果样本数量小于特征数,那么就没必要选择非线性核,简单的使用线性核就可以了;
第二,如果样本数量大于特征数目,这时可以使用非线性核,将样本映射到更高维度,一般可以得到更好的结果;
第三,如果样本数目和特征数目相等,该情况可以使用非线性核,原理和第二种一样。
对于第一种情况,也可以先对数据进行降维,然后使用非线性核,这也是一种方法。
应用领域
文本分类、图像识别(主要二分类领域,毕竟常规SVM只能解决二分类问题)
-
Adaboost
Adaboost是一种加和模型,每个模型都是基于上一次模型的错误率来建立的,过分关注分错的样本,而对正确分类的样本减少关注度,逐次迭代之后,可以得到一个相对较好的模型。该算法是一种典型的boosting算法,其加和理论的优势可以使用Hoeffding不等式得以解释。
优点:
- Adaboost是一种有很高精度的分类器;
- 可以使用各种方法构建子分类器,Adaboost算法提供的是框架;
- 当使用简单分类器时,计算出的结果是可以理解的,并且弱分类器的构造极其简单;
- 简单,不用做特征筛选;
- 不易发生overfitting。
缺点
- 对outlier比较敏感。
-
K-Means聚类
K-Means是一个简单的聚类算法,把n的对象根据他们的属性分为k个分割,k< n。 算法的核心就是要优化失真函数J,使其收敛到局部最小值但不是全局最小值。
优点
- 算法简单,容易实现 ;
- 算法速度很快;
- 对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k«n。这个算法通常局部收敛;
- 算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,且簇与簇之间区别明显时,聚类效果较好。
缺点
- 对数据类型要求较高,适合数值型数据;
- 可能收敛到局部最小值,在大规模数据上收敛较慢;
- 分组的数目k是一个输入参数,不合适的k可能返回较差的结果;
- 对初值的簇心值敏感,对于不同的初始值,可能会导致不同的聚类结果;
- 不适合于发现非凸面形状的簇,或者大小差别很大的簇;
- 对于”噪声”和孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。